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Chapter 6. Radiating Systems 
Notes: 
• Most of the material presented in this chapter is taken from Jackson, Chap. 9, and 

Rybicki and Lightman, Chap. 3. 

6.1 Radiation from a Localized Oscillating Source 
Since any function, say ρ x,t( )  of position and time can always be expressed with 
Fourier transform with 
 

 
ρ x,t( ) = 1

4π 2 ρ k,ω( )ei k⋅x−ω t( ) d 3k dω
−∞

∞

∫−∞

∞

∫
ρ k,ω( ) = 1

4π 2 ρ x,t( )e− i k⋅x−ω t( ) d 3x dt
−∞

∞

∫−∞

∞

∫ ,
 (6.1) 

 
it will always be possible to integrate on only one of the subspaces in any of equations 
(6.1) to get for example 
 

 
ρ x,t( ) = 1

4π 2 dωe− iω t ρ k,ω( )eik⋅x d 3k
−∞

∞

∫−∞

∞

∫
=

1
2π

ρ x,ω( )e− iω t dω
−∞

∞

∫ ,
 (6.2) 

 
with  
 

 ρ x,ω( ) = 1
2π( )3 2

ρ k,ω( )eik⋅x d 3k
−∞

∞

∫ .  (6.3) 

 
It is, therefore, sensible to simplify problems by considering only one particular 
frequency component at a time (in a way similar as was previously done). For example, 
for the sources of potentials and electromagnetic fields (i.e., the charge and current 
densities) we can write, with a slight modification to the notation used in equation (6.2), 
 

 
ρ x,t( ) = ρ x( )e− iω t
J x,t( ) = J x( )e− iω t .

 (6.4) 

 
The (frequency components of the) potentials and sources will exhibit the same time 
dependency, and as usual, the corresponding physical quantities are obtained by taking 
the real part of expressions such as equations (6.4). For the present purposes, we will 
assume that the sources are localized in free space. In fact, we will consider situations 
where the size d  of the sources is much smaller that the wavelength, with  d ≪ λ . 
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As a first step, we can use the current density of equation (6.4) to evaluate the fields from 
the last of equations (4.38) for the vector potential. So, we write (using the Lorenz gauge) 
 

 
A x,t( ) = µ0

4π
J ′x , ′t( )⎡⎣ ⎤⎦ret
x − ′x

d 3 ′x∫

=
µ0
4π

d 3 ′x d ′t
J ′x , ′t( )
x − ′x∫ δ ′t − t +

x − ′x
c

⎛
⎝⎜

⎞
⎠⎟∫ .

 (6.5) 

 
If we insert the second of equations (6.4) in equation (6.5) we find that 
 

 
A x,t( ) = µ0

4π
d 3 ′x

J ′x( )
x − ′x

d ′t∫ e− iω ′t δ ′t − t +
x − ′x
c

⎛
⎝⎜

⎞
⎠⎟∫

= e− iω t
µ0
4π

J ′x( ) e
ik x− ′x

x − ′x
d 3 ′x∫ ,

 (6.6) 

 
with k =ω c , and 
 

 A x( ) = µ0
4π

J ′x( ) e
ik x− ′x

x − ′x
d 3 ′x∫  (6.7) 

 
The electromagnetic fields in free space are then easily obtained from this result and 
 

 H =
1
µ0

∇ × A,  (6.8) 

 
and the Ampère-Maxwell law (with J = 0  in free space) 
 

 E = i Z0
k
∇ ×H,  (6.9) 

 
with Z0 = µ0 ε0  the impedance of vacuum.  

Because it may not be possible to solve the integral in equation (6.7) for a general current 
distribution, we want to work a simple approximation procedure that will allow us to 
evaluate the dominant terms for the vector potential. More precisely, in the so-called 
near field where  d ≪ r ≪ λ  the exponential in the integrand of equation (6.7) 
approximately equals one and we can write, substituting equation (2.61) for x − ′x −1 , 
 

 lim
kr→0

A x( ) = µ0
4π

4π
2l +1

Ylm θ,ϕ( )
rl+1

J ′x( ) ′r lYlm
* ′θ , ′ϕ( ) d 3 ′x∫

m=− l

l

∑
l=0

∞

∑ ,  (6.10) 
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where r = x  and ′r = ′x . Equation (6.10) shows that, although it exhibits sinusoidal 
oscillations, the vector potential is otherwise static in form (that is, in a spatial sense). On 
the other hand, in the far field where  d ≪ λ ≪ r , the exponential in equation (6.7) 
oscillates rapidly, and therefore dictates the behavior of the potential and we make the 
following approximation 
 
  x − ′x ! r − n ⋅ ′x ,  (6.11) 
 
with n = er  is the unit vector directed from the source to the observation point (actually, 
equation (6.11) is good even in the near field since  d ≪ r  there). However, it is sufficient 
to keep only the leading term on the right-hand side of equation (6.11) for the 
denominator, which, when combined with the approximation for the exponential, yields 
for the vector potential  
 

 lim
kr→∞

A x( ) = µ0
4π

eikr

r
J ′x( )e− ikn⋅ ′x d 3 ′x∫ .  (6.12) 

 
This result implies that the vector potential has only a radial dependency, and propagates 
as a spherical wave in the r-positive  direction. Upon applying the equation for the curl in 
spherical coordinates we find that the electromagnetic fields evaluated with equations 
(6.8) and (6.9) are transverse to the radius vector with their amplitude decreasing as 1 r . 
They constitute radiation fields. 

6.2 The Electric Monopole and Dipole Terms 
We have so far only considered expansions of the vector potential. One may inquire as to 
using similar expansions using the scalar potential instead. To do so, we write the first of 
equations (4.38) in way similar to what we did in equation (6.5) for the vector potential. 
That is, 
 

 Φ x,t( ) = 1
4πε0

d 3 ′x d ′t
ρ ′x , ′t( )
x − ′x∫ δ ′t − t +

x − ′x
c

⎛
⎝⎜

⎞
⎠⎟∫ .  (6.13) 

 
We can start by considering the electric monopole term, which arises from equation 
(6.13) when x − ′x → x = r . Then, 
 

 

Φmonopole x,t( ) = 1
4πε0r

d 3 ′x d ′t ρ ′x , ′t( )∫ δ ′t − t +
r
c

⎛
⎝⎜

⎞
⎠⎟∫

=
1

4πε0r
ρ ′x ,t − r

c
⎛
⎝⎜

⎞
⎠⎟∫ d 3 ′x

=
q ′t = t − r

c
⎛
⎝⎜

⎞
⎠⎟

4πε0r
.

 (6.14) 
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We find that the electric monopole time is proportional to the total charge, and is 
therefore not a function of time. Since this quantity is conserved, the fields due to the 
monopole term are static in character and will not radiate (or dominate) at large 
distances.  
We now go back to equation (6.12) for the far field approximation of the vector potential, 
and expand the exponential in its Taylor series about ′x = 0 . The first term yields the 
following vector potential 
 

 A x( ) = µ0
4π

eikr

r
J ′x( ) d 3 ′x∫ .  (6.15) 

 
We can transform this relation using equation (3.35) derived while dealing with 
magnetostatics 
 
 gJ ⋅ ′∇ f + fJ ⋅ ′∇ g + fg ′∇ ⋅ J[ ] d 3 ′x∫ = 0,  (6.16) 
 
with f  and g  two good functions. As we did then, we set f = 1 and g = ′xi  into equation 
(6.16) to find that 
 
 Ji d

3 ′x∫ = − ′xi ′∇ ⋅ J d 3 ′x∫ ,  (6.17) 
 
or alternatively 
 
 J d 3 ′x∫ = − ′x ′∇ ⋅ J( ) d 3 ′x∫ .  (6.18) 
 
But since from the continuity equation 
 
 ∇ ⋅ J = iωρ,  (6.19) 
 
then equation (6.15) becomes 
 

 A x( ) = −
µ0iω
4π

eikr

r
′x ρ ′x( ) d 3 ′x∫ .  (6.20) 

 
Just as we did in electrostatics, we define the electric dipole moment as 
 

 p = ′x ρ ′x( ) d 3 ′x∫  (6.21) 

 
and 
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 A x( ) = −
µ0iω
4π

p e
ikr

r
 (6.22) 

 
The electromagnetic fields can be evaluated from equations (6.8) and (6.9) with 
 

 

H = −
iω
4π

∇ × p e
ikr

r
⎛
⎝⎜

⎞
⎠⎟

=
iω
4π
p × ∇

eikr

r
⎛
⎝⎜

⎞
⎠⎟

=
ck2

4π
n × p( ) e

ikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟
,

 (6.23) 

 
and 
 

 

E = i Z0
k
∇ ×

ck2

4π
n × p( ) e

ikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
ik
4πε0

∇ × n × p( ) e
ikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
ik
4πε0

∇
eikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ × n × p( ) + e

ikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟
∇ × n × p( )⎧

⎨
⎩⎪

⎫
⎬
⎭⎪

=
ik
4πε0

ik e
ikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟
2

+
eikr

ikr3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
n × n × p( ) + e

ikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟
p ⋅∇( )n − p ∇ ⋅n( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=
ik
4πε0

eikr

r
ik − 2

r
+
2
ikr2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥n × n × p( ) + e

ikr

r
1
r
−
1
ikr2

⎛
⎝⎜

⎞
⎠⎟

pθeθ + pϕeϕ( ) − 2p⎡⎣ ⎤⎦
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
1
4πε0

n × p( ) × nk2 e
ikr

r
−
2eikr

r
ik
r
−
1
r2

⎛
⎝⎜

⎞
⎠⎟
n n ⋅p( ) − p⎡⎣ ⎤⎦

⎧
⎨
⎩

−
eikr

r
ik
r
−
1
r2

⎛
⎝⎜

⎞
⎠⎟
n n ⋅p( ) + p⎡⎣ ⎤⎦

⎫
⎬
⎭

=
1
4πε0

n × p( ) × nk2 e
ikr

r
+ 3n n ⋅p( ) − p⎡⎣ ⎤⎦

1
r3

−
ik
r2

⎛
⎝⎜

⎞
⎠⎟
eikr

⎧
⎨
⎩

⎫
⎬
⎭
.

(6.24) 

 
In the near field (i.e., kr→ 0 ), equations (6.23) and (6.24) simplify to 
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H =

iω
4π

n × p( ) 1
r2

E =
1
4πε0

3n n ⋅p( ) − p⎡⎣ ⎤⎦
1
r3

 (6.25) 

 
Comparison with the corresponding electrostatics relation (i.e., equation (2.97)) shows 
that, except for its implicit time oscillations (see equations (6.4)), the electric dipole field 
in the near field is similar to its static counterpart. Since, from equation (6.9), the 
magnetic field times Z0  is smaller than the electric field by a factor proportional to kr , 
then the near field is dominantly electric in nature. 

In the far field (i.e., kr→∞ ), the electromagnetic fields are 
 

 
H =

ck2

4π
n × p( ) e

ikr

r

E =
1
4πε0

n × p( ) × n⎡⎣ ⎤⎦ k
2 eikr

r

 (6.26) 

  
It is important to note that since k =ω c , it is possible to show (see the third problem 
list) that equations (6.26) can be rewritten as 
 

 

H x,t( ) = 1
4πcr

∂2pret
∂t 2

× n⎛
⎝⎜

⎞
⎠⎟

E x,t( ) = 1
4πε0c

2r
n× n× ∂2pret

∂t 2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 (6.27) 

 
where pret = p ′t = t − r c( )  (i.e., pret  is the dipole moment evaluated at the retarded 
time). We, therefore, once again (see equations (4.62)) obtain the fundamental result that 
radiation fields are due to the acceleration of charges. More precisely, we see here that 
the dominant radiation fields come from the acceleration of the electric dipole moment. 
The time-averaged power radiated per unit solid angle by the oscillating dipole moment 
is given by 
 

 
dP
dΩ

=
1
2
r2n ⋅ E ×H*( ),  (6.28) 

 
and substituting equations (6.26) we find 
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dP
dΩ

=
ck 4

32π 2ε0
n ⋅ n × p( ) × n⎡⎣ ⎤⎦ × n × p( )*{ }( )

=
ck 4

32π 2ε0
n × p( ) × n⎡⎣ ⎤⎦ ⋅ n × p( ) × n⎡⎣ ⎤⎦

*{ },
 (6.29) 

 
where we used the relation a ⋅ b × c( ) = b ⋅ c × a( ) . Then, 
 

 
dP
dΩ

=
ck 4

32π 2ε0
n × p( ) × n 2  (6.30) 

 
 
or alternatively 
 

 
dP
dΩ

=
Z0c

2k 4

32π 2 n × p( ) × n 2  (6.31) 

 
The state of polarization of the radiation is given by n × p( ) × n . If the phase of the 
different component of the dipole moment is the same, then the angular distribution is 
that of a typical dipole pattern 
 

 
dP
dΩ

=
Z0c

2k 4

32π 2 p 2 sin2 θ( ),  (6.32) 

 
where θ  is the angle measured from p to n . Finally, the total power irradiated, 
irrespective of the relative phases of the components of the dipole moment is 
 

 

P =
Z0c

2k 4

32π 2 p 2 sin2 θ( ) dΩ∫

=
Z0c

2k 4

16π
p 2 sin3 θ( ) dθ

0

π

∫

=
Z0c

2k 4

16π
p 2 sin θ( ) 1− cos2 θ( )⎡⎣ ⎤⎦ dθ0

π

∫ ,

 (6.33) 

 
which yields 
 

 P =
Z0c

2k 4

12π
p 2  (6.34) 
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6.2.1 An Example: Thomson Scattering of Radiation 
One important application of the dipole approximation is to the process in which a free 
charge radiates in response to an incident electromagnetic monochromatic wave. If the 
charge oscillates at non-relativistic velocities ( v≪ c ), then we can neglect the magnetic 
term of the Lorentz force (since E = Z0H = cB  for a transverse wave in vacuum). If the 
electric field associated with the wave is 
 
 E x( ) = e0E0eik⋅x ,  (6.35) 
 
(again, this refers to the temporal Fourier transform of the field; see equations (6.4)), then 
considering the Lorentz force on the charge we have 
 

 x = −e0
q

ω 2m
E0e

ik⋅x . (6.36) 

 
The dipole moment p = qx  is therefore 
 

 p = −
q2E0
mω 2 e

ik⋅xe0 ,  (6.37) 

 
From equation (6.31), the time-averaged power per unit solid angle polarized along a 
given direction e1  perpendicular to the direction of propagation n  will be 
 

 

dP
dΩ

⎛
⎝⎜

⎞
⎠⎟ polarized

=
ck 4

32π 2ε0
e1
* ⋅ n × p( ) × n⎡⎣ ⎤⎦

2

=
ck 4

32π 2ε0
e1
* ⋅ p − n ⋅p( )n⎡⎣ ⎤⎦

2
,
 (6.38) 

 
and since e1

* ⋅n = 0  
 

 
dP
dΩ

⎛
⎝⎜

⎞
⎠⎟ polarized

=
ck 4

32π 2ε0
e1
* ⋅p

2
 (6.39) 

 
This result is general. If the process is interpreted as one of scattering, then it is 
convenient to define the differential scattering cross section as 
 

 
dσ
dΩ

=
Energy radiated/unit time/unit solid angle

Incident energy flux in energy/unit area/unit time
.  (6.40) 

 
Mathematically, this translates to 
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dP
dΩ

= S dσ
dΩ

 (6.41) 

 
Since  
 

 
S =

1
2
E ×H*

=
E 2

2Z0
=
1
2
cε0 E

2 ,
 (6.42) 

 
then from equations (6.37) and (6.39) 
 

 
dσ
dΩ

=
1
4πε0

q2

mc2
⎛
⎝⎜

⎞
⎠⎟

2

e1
* ⋅ e0

2
.  (6.43) 

 
When substituting for the mass and charge of an electron, the quantity  
 

 r0 ≡
1
4πε0

q2

mc2
 (6.44) 

 
is a measure of the size of an electron ( r0 = 2.82 ×10

−15m ), and is called the classical 
electron radius. Integration of the differential scattering cross section over all solid angle 
(through a process similar to equations (6.33) yields the Thomson cross section 
 

 σ T =
8π
3

1
4πε0

q2

mc2
⎛
⎝⎜

⎞
⎠⎟

2

,  (6.45) 

 
which equals 0.665 ×10−28m2 . 

6.3 Magnetic Dipole and Electric Quadrupole Fields 
We simply use the next term in the expansion of the exponential function in the integrand 
of equation (6.12) to find expressions for the electromagnetic fields due to the next 
multipoles in the far field. But in order to find expressions that are valid at any distances 
from the sources, we will go back to equation (6.7) and substitute the equation (6.11) to 
approximate both the exponential function, and the denominator. That is, 
 



139 

 

 

eik x− ′x

x − ′x
!
eikr 1− ikn ⋅ ′x( )

r − n ⋅ ′x

!
eikr

r
1− ikn ⋅ ′x( ) 1+ n ⋅ ′x

r
⎛
⎝⎜

⎞
⎠⎟

!
eikr

r
1+ n ⋅ ′x 1

r
− ik⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
.

 (6.46) 

 
The first term on the right-hand side has already been dealt with, and yielded the electric 
dipole field when inserted in equation (6.7). We are now concerned with the last term on 
the right-hand side of equation (6.46), with which the potential vector becomes 
 

 A x( ) = µ0
4π

eikr

r
1
r
− ik⎛

⎝⎜
⎞
⎠⎟
J ′x( ) n ⋅ ′x( ) d 3 ′x∫ .  (6.47) 

 
Next, we rearrange the integrand by separating it into parts that are, respectively, 
symmetric and anti-symmetric in the exchange of ′x  and J  
 
 n × ′x × J( ) = n ⋅ J( ) ′x − n ⋅ ′x( )J,  (6.48) 
 
and 
 

 n ⋅ ′x( )J = 1
2
n ⋅ ′x( )J + n ⋅ J( ) ′x⎡⎣ ⎤⎦ +

1
2

′x × J( ) × n.  (6.49) 

 

6.3.1 The Magnetic Dipole Fields 
The last term on the right-hand side is related to the magnetization due to the current 
density (see equation (3.39)) with 
 

 
 
M x( ) = 1

2
x × J( ),  (6.50) 

 
and the vector potential due to the magnetization is 
 

 A x( ) = µ0ik
4π

n ×m( ) e
ikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟

 (6.51) 

 
with m  the magnetic dipole moment 
 

 
 
m = M ′x( ) d 3 ′x∫ =

1
2

′x × J( ) d 3 ′x∫  (6.52) 
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Comparing equation (6.51) with that of the magnetic field He  due to the dipole electric 
moment (i.e., equation (6.23)), we find that they have the same form (more precisely, 
A→ iHeµ0 k , with p→m c ). Therefore, since in free space the magnetic field is 
simply µ0

−1  times the curl of the potential vector, and that the electric field is iZ0 k  times 
the curl of the magnetic field (see equations (6.8) and (6.9)), then the magnetic field due 
to the magnetic dipole moment will be H→ Ee Z0 , with p→m c ; Ee  is the electric 
field dues to the electric dipole moment. That is, 
 

 H =
1
4π

k2 n ×m( ) × n e
ikr

r
+ 3n n ⋅m( ) −m⎡⎣ ⎤⎦

1
r3

−
ik
r2

⎛
⎝⎜

⎞
⎠⎟
eikr

⎧
⎨
⎩

⎫
⎬
⎭
.  (6.53) 

 
In the same way, since from Faraday’s law H = ∇ × E( ) iZ0k , then we find that 
E = ikZ0 µ0A . That is, 
 

 E x( ) = −
Z0
4π

k2 n ×m( ) e
ikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟
.  (6.54) 

 
Because of the close relationship between the electromagnetic fields due to the electric 
and magnetic dipole moments, the same comments concerning the near and far fields 
made in section 6.2 apply here also (that is, as long as we make the following 
substitutions E→ Z0H, Z0H→ −E, and p→m c ). The power radiated has also the same 
form in both cases, while the polarization of the wave will be different from the fact that 
the electric field is oriented along n ×m  for magnetic dipole radiation (i.e., in a plane 
perpendicular to n and m ), while is oriented along n × p( ) × n  for electric dipole 
radiation (i.e., in the plane formed by n and p ). 

6.3.2 The Electric Quadrupole Fields 
With a little work, the symmetric term of equation (6.49) can be transformed in a way 
that will allow us to introduce the electric quadrupole term. To do so, we consider a 
single component, say component “1”, of the vector integral 
 
 n ⋅ ′x( )J + n ⋅ J( ) ′x⎡⎣ ⎤⎦1 d

3 ′x∫ = nj ′x jJ1 + njJ j ′x1⎡⎣ ⎤⎦ d
3 ′x∫

j
∑ ,  (6.55) 

 
where summations on any indices is explicitly written. Next we integrate by parts the 
terms involving J1  to get 
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I = nj ′x jJ1 + njJ j ′x1⎡⎣ ⎤⎦ d
3 ′x∫

j
∑

= − ′x1 ′∂1J1 nj ′x j
j
∑ − ′x1 n2J2 + n3J3( )⎡

⎣
⎢

⎤

⎦
⎥ d 3 ′x∫ ,

 (6.56) 

 
and in turn we now integrate by parts the last two terms 
 

 

I = − ′x1 ′∂1J1 nj ′x j
j
∑ + n2 ′x2 ′∂2J2 + n3 ′x3 ′∂3J3

⎡

⎣
⎢

⎤

⎦
⎥ d 3 ′x∫

= − ′x1 n ⋅ ′x( ) ′∇ ⋅ J( )⎡⎣ − n1 ′x1 + n3 ′x3( ) ′∂2J2∫
− n1 ′x1 + n2 ′x2( ) ′∂3J3 ⎤⎦ d

3 ′x

= − ′x1 n ⋅ ′x( ) ′∇ ⋅ J( ) d 3 ′x∫ + ′x1 n1 ′x1 + n3 ′x3( )J2 ′x2 =−∞

′x2 =∞⎡
⎣

⎤
⎦ d ′x1d ′x3∫

+ ′x1 n1 ′x1 + n2 ′x2( )J3 ′x3 =−∞

′x3 =∞⎡
⎣

⎤
⎦ d ′x1d ′x2∫

= − ′x1 n ⋅ ′x( ) ′∇ ⋅ J( ) d 3 ′x∫ .

 (6.57) 

 
Finally, resorting back to a vector notation, and using the equation of continuity (see 
equation (6.19)), we have 
 

 
1
2

n ⋅ ′x( )J + n ⋅ J( ) ′x⎡⎣ ⎤⎦ d
3 ′x∫ = −

iω
2

′x n ⋅ ′x( )ρ ′x( ) d 3 ′x∫ ,  (6.58) 

 
and the vector potential becomes 
 

 A x( ) = −
µ0ck

2

8π
eikr

r
1− 1

ikr
⎛
⎝⎜

⎞
⎠⎟ ′x n ⋅ ′x( )ρ ′x( ) d 3 ′x∫ . (6.59) 

 
Although expressions for the electromagnetic fields valid over all of space could be 
evaluated using equations (6.8) and (6.9), we will, for the sake of simplicity, limit 
ourselves to the far (or radiation) fields. We then find 
 

 
H =

ik
µ0
n × A

E =
ik
µ0
Z0 n × A( ) × n.

 (6.60) 

 
Take note that in deriving equations (6.60) other terms arise (e.g., a term proportional to 

′x ⋅∇( )n ; note that ∇ × n = 0 ), but they can safely be neglected in the far field since 
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introduce an additional 1 r  multiplying factor. Using equation (6.59) (keeping only the 
far field term), the magnetic field can be written as 
 

 H x( ) = −
µ0ck

2

8π
eikr

r
n × ′x n ⋅ ′x( )ρ ′x( ) d 3 ′x∫⎡
⎣

⎤
⎦. (6.61) 

 
Since we expect the electric quadrupole term Qij  (see equation (2.88)) to come out of this 
equation, we must somehow transform the term in bracket. More precisely, we consider 
one component of the corresponding vector 
 
 n × x n ⋅x( )ρ x( ) d 3x∫⎡

⎣
⎤
⎦i = εijkn j xknmxmρ x( ) d 3x∫ ,  (6.62) 

 
but since  
 
 Qkm = 3xkxm − δkmr

2( )ρ x( ) d 3x∫ ,  (6.63) 
 
we have free to subtract the following term 
 

 
1
3
εijkδ jk r2 d 3x∫ = 0  (6.64) 

 
to equation (6.62) (note that εijkδ jk = 0 ). Then equation (6.62) becomes 
 

 

n × x n ⋅x( )ρ x( ) d 3x∫⎡
⎣

⎤
⎦i = εijk n j xknmxm −

1
3
δ jkr

2⎛
⎝⎜

⎞
⎠⎟
ρ x( ) d 3x∫

= εijk n j xknmxm −
1
3
njnmδkmr

2⎛
⎝⎜

⎞
⎠⎟
ρ x( ) d 3x∫

= εijkn j nm xkxm −
1
3
δkmr

2⎛
⎝⎜

⎞
⎠⎟
ρ x( ) d 3x∫

=
1
3
εijkn j nmQkm d

3x∫ .

 (6.65) 

 
Further defining a vector Q n( )  such that its components are 
 
 Qk = Qkmnm ,  (6.66) 
 
then we have for the electromagnetic fields in the far field 
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H = −

ick 3

24π
eikr

r
n ×Q n( )

E = −
Z0ick

3

24π
eikr

r
n ×Q n( )⎡⎣ ⎤⎦ × n

 (6.67) 

 
Using equation (6.28) for the definition of the time-averaged power radiated per unit 
solid angle, and similar calculations as were used for the case of the electric dipole 
moment, we find that 
 

 
dP
dΩ

=
c2Z0k

6

1152π 2 n ×Q n( )⎡⎣ ⎤⎦ × n
2

 (6.68) 

 
for the electric quadrupole field. To evaluate the total power radiate, we first expand  
 

 
n ×Q n( )⎡⎣ ⎤⎦ × n

2
= Q* ⋅Q − n ⋅Q 2

= Qij
*Qiknjnk −Qij

*Qkmninjnknm .
 (6.69) 

 
We must first evaluate the integrals njnk dΩ∫ . We first note that since  
 
 n = ex sin θ( )cos ϕ( ) + ey sin θ( )sin ϕ( ) + ez cos θ( ),  (6.70) 
 
and 
 

 sin θ( )sin ϕ( )⎡⎣ ⎤⎦
2 dΩ∫ = sin θ( )cos ϕ( )⎡⎣ ⎤⎦

2 dΩ∫ = cos2 θ( ) dΩ∫ =
4π
3
,  (6.71) 

 
while the integral of any other product of the components on n  are zero, then 
 

 njnk dΩ∫ =
4π
3
δ jk .  (6.72) 

 
We also need to evaluate ninjnknm dΩ∫ . In this case, it is clear that integrals of this type 
will only be non-zero if they consist of a product of pairs. More precisely, if the integrand 
consists of the square of a given pair, then 
 

 sin θ( )sin ϕ( )⎡⎣ ⎤⎦
4 dΩ∫ = sin θ( )cos ϕ( )⎡⎣ ⎤⎦

4 dΩ∫ = cos4 θ( ) dΩ∫ =
4π
5
,  (6.73) 

 
while for the integrals made of the product of two distinct pairs we have 
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sin θ( )sin ϕ( )⎡⎣ ⎤⎦
2 sin θ( )cos ϕ( )⎡⎣ ⎤⎦

2 dΩ∫
= sin θ( )sin ϕ( )⎡⎣ ⎤⎦

2 cos2 θ( ) dΩ∫
= sin θ( )cos ϕ( )⎡⎣ ⎤⎦

2 cos2 θ( ) dΩ∫ =
4π
15
.

 (6.74) 

 
Again, any other integral vanishes. We can combine these three different results into 
single equation 
 

 ninjnknm dΩ∫ =
4π
15

δ ijδkm + δ ikδ jm + δ imδ jk( ).  (6.75) 

 
We are now in a position to integrate equation (6.69), with the result that 
 
  

 n ×Q n( )⎡⎣ ⎤⎦ × n
2
dΩ∫ =

4π
3

Qij
*Qij −

1
5
Qii
*Qjj + 2Qij

*Qij( )⎡
⎣⎢

⎤
⎦⎥
,  (6.76) 

 
where we used Qij = Qji . Also, since we have from equation (6.63) that Qii = 0 , then 
 

 n ×Q n( )⎡⎣ ⎤⎦ × n
2
dΩ∫ =

4π
5
Qij
*Qij ,  (6.77) 

 
and 
 

 P =
c2Z0k

6

1440π
Qij
*Qij  (6.78) 

 


